
Are all BSDs created equally?
A survey of BSD kernel vulnerabili9es.

	
	
	

Ilja	van	Sprundel	<ivansprundel@ioac4ve.com>	

Who Am I

•  Ilja	van	Sprundel		
•  ivansprundel@ioac4ve.com	

•  Director	of	Penetra4on	Tes4ng	at	IOAc4ve		
•  Pen	test	
•  Code	review	
•  Break	stuff	for	fun	and	profit	J		

Outline/Agenda

•  Intro	
•  Data!	

•  vulnerabili4es	over	the	years	

•  Test	by	audit	
•  Common	aJack	surface		
•  Somewhat	less	common	aJack	surface		

•  Some	results	/	conclusions		

What is this talk about?

•  BSD	kernel	vulnerabili4es		
•  Comparison		
•  Between	different	BSD	flavors		

•  Audience		
•  Low	level	security	enthusiasts		
•  UNIX/BSD	geeks		

•  I	suspect	Linux	folks	might	enjoy	this	too		

•  Curious	people	that	like	to	poke	around	in	OS	internals	

•  Knowledge		
•  Some	basic	knowledge	of	UNIX	/	BSD	internals			

Standing on
the shoulders

of giants

•  Previous	interes4ng	BSD	kernel	security	
research	by:		
•  Silvio		
•  the	noir	
•  Esa	Etelavuori	
•  Patroklos	(argp)	Argyroudis	
•  Christer	Oberg		
•  Joel	Erikkson		
•  Clement	Lecigne	

intro

Really? Got Data?

•  Somehow	that	statement	has	always	
been	stuck	in	my	head		
•  Is	it	true?		
•  Can	we	look	at	some	data	?		

Source: hFps://www.cvedetails.com/product/47/Linux-Linux-Kernel.html

Data!

•  Goes	from	current	back	to	1999	for	Linux	kernel	vulnerabili4es		
•  Cvedetails.com	doesn’t	seem	to	provide	data	for	OBSD/NBSD/FBSD		
•  Manually	grab	it	from		

•  hJps://www.freebsd.org/security/advisories.html	
•  hJp://netbsd.org/support/security/advisory.html	
•  hJps://www.openbsd.org/errata*.html	

BSD kernel vulnerabili9es over the years

•  Looking	at	these	numbers,	that	was	an	astute	
observa4on	by	Theo.		
•  20	was	a	very	low	es4mate		

• But	are	these	numbers	on	equal	foo4ng?		

• Many	eyeballs?		
•  Yea,	yea,	I	know	….	But	is	there	some	truth	to	it	in	this	
case?			

FreeBSD	 NetBSD	 OpenBSD	

1999	 3	 8	XXXTODO	

2000	 8	 4	XXXTODO	

2001	 6	 7	XXXTODO	

2002	 11	 6	XXXTODO	

2003	 7	 3	XXXTODO	

2004	 8	 5	XXXTODO	

2005	 11	 8	XXXTODO	

2006	 9	 15	XXXTODO	

2007	 1	 4	XXXTODO	

2008	 8	 6	XXXTODO	

2009	 5	 1	XXXTODO	

2010	 3	 6	XXXTODO	

2011	 1	 2	XXXTODO	

2012	 2	 1	XXXTODO	

2013	 8	 8	XXXTODO	

2014	 7	 6	XXXTODO	

2015	 7	 2	XXXTODO	

2016	 12	 1	XXXTODO	

2017	 1	 3	XXXTODO	

Total	 118	 96	XXXTODO	

Test by audit!

•  Silvio	Cesare	did	some	interes4ng	work	in	~2002	that	gives	
some	answers			

•  hJps://www.blackhat.com/presenta4ons/bh-usa-03/bh-
us-03-cesare.pdf		

•  His	results	seem	to	indicate	there	isn’t	really	that	much	of	a	
quality	difference.	However:		
•  that	was	well	over	a	decade	ago.		

•  Have	things	changed?		

•  Time	spend	on	the	BSDs	was	only	a	couple	of	days	compared	to	Linux	
•  If	more	4me	would’ve	been	spend,	would	more	bugs	have	been	found?		

•  bugs	are	mostly	int	overflows	and	info	leaks		
•  Other	kinds	of	issues	that	can	‘easily’	be	found	?		

Test by Audit redux.

•  Spend	April-May-June	audi4ng	BSD	source	code.	
•  Asked	myself,	“where	would	the	bugs	be?”		
•  AJack	surface	

•  Very	common	
•  Syscalls		
•  TCP/IP	stack		

•  Somewhat	less	common	(in	ascending	order,	more	or	less)	
•  Drivers	(ioctl	interface)	
•  compat	code		
•  Trap	handlers		
•  Filesystems			
•  Other	networking	(BT,	wifi,	IrDA)	
	

Syscalls

AFack surface entrypoint

•  The	obvious	aJack	surface		
•  Syscalls	are	how	userland	gets	anything	done	from	kernel		
•  Hundreds	of	them		

•  FreeBSD:	~550		
•  OpenBSD:	~330		
•  NetBSD:	~480	

•  Assump4on:	given	that	they’re	obvious,	and	well	tested,	less	likely	to	contain	
security	bugs		

int	
sys_sendsyslog(struct	proc	*p,	void	*v,	register_t	*retval)	
{	

	struct	sys_sendsyslog_args	/*	{	
	 	syscallarg(const	void	*)	buf;	
	 	syscallarg(size_t)	nbyte;	
	 	syscallarg(int)	flags;	
	}	*/	*uap	=	v;	
	int	error;	
	sta4c	int	dropped_count,	orig_error;	

...	
	error	=	dosendsyslog(p,	SCARG(uap,	buf),	

SCARG(uap,	nbyte),	
					SCARG(uap,	flags),	UIO_USERSPACE);	

...	
	return	(error);	

}	

int	
dosendsyslog(struct	proc	*p,	const	char	*buf,	size_t	nbyte,	int	flags,	
				enum	uio_seg	sflg)	
{	
...	

	struct	iovec	aiov;	
	struct	uio	auio;	
	size_t	i,	len;	

...	
	aiov.iov_base	=	(char	*)buf;	
	aiov.iov_len	=	nbyte;	ß	user	controlled	size_t.	never	capped	anywhere		

...	
	auio.uio_resid	=	aiov.iov_len;	

...	
	len	=	auio.uio_resid;	ß	user	controlled	size_t	
	if	(fp)	{	

...	
	}	else	if	(consJy	||	cn_devvp)	{	

...	
	}	else	{	

...	
	 	 	kbuf	=	malloc(len,	M_TEMP,	M_WAITOK);			

...	
	}	

...	
}	

Sample bug

•  sendsyslog	system	call		
•  OpenBSD	6.1	

•  Been	there	since	OpenBSD	6.0	
•  Unbound	length	passed	to	malloc()	from	userland		
• Will	trigger	a	kernel	panic		

•  Previous	assump4on	is	not	[en4rely]	true:	bugs	in	syscalls	do	occur	with	some	
frequency		
•  Especially	newly	added	syscalls		

TCP/IP stack

AFack surface entrypoint

•  TCP/IP	stack		
•  Ipv4/6		
•  Udp/tcp/icmp	
•  Ipsec		
•  …	

•  Obvious	and	well	known	aJack	surface		
•  Has	been	around	forever		
•  Assump4on:	well	tested	and	less	likely	to	find	bugs	there		

struct	secpolicy	*	
key_msg2sp(

	 				struct	sadb_x_policy	*xpl0,	
	 				size_t	len,	
	 				int	*error)	

{	
...	

	switch	(xpl0->sadb_x_policy_type)	{	
...	

	 	case	IPSEC_POLICY_IPSEC:	
	 	{	

...	
	 	 	tlen	=	PFKEY_EXTLEN(xpl0)	-	sizeof(*xpl0);	
	 	 	xisr	=	(struct	sadb_x_ipsecrequest	*)(xpl0	+	1);	
	 	 		
	 	 	while	(tlen	>	0)	{		

/*	length	check	*/	
if	(xisr->sadb_x_ipsecrequest_len	<	sizeof(*xisr))	{		

	ipseclog((LOG_DEBUG,	"key_msg2sp:	"	
			"invalid	ipsecrequest	length.\n"));	
	key_freesp(newsp,	KEY_SADB_UNLOCKED);	
	*error	=	EINVAL;	
	return	NULL;	

}	

length	check	is	incomplete.	
sadb_x_ipsecrequest_len	can	
be	invalid	

if	(xisr->sadb_x_ipsecrequest_len	>	sizeof(*xisr))	{	
	struct	sockaddr	*paddr;	
	 	 	 	 		
	paddr	=	(struct	sockaddr	*)(xisr	+	1);	
	 	 	 	 		
	/*	validity	check	*/	
	if	(paddr->sa_len	
	 	>	sizeof((*p_isr)->saidx.src))	{		
	 	ipseclog((LOG_DEBUG,	"key_msg2sp:	invalid	request	"	
	 			"address	length.\n"));	
	 	key_freesp(newsp,	KEY_SADB_UNLOCKED);	
	 	*error	=	EINVAL;	
	 	return	NULL;	
	 	}		

length	check	is	incomplete.	
sadb_x_ipsecrequest_len	can	
be		invalid	

length	check	is	incomplete.		
paddr->sa_len	can	be	
invalid	

bcopy(paddr,	&(*p_isr)->saidx.src,		paddr->sa_len);	

this	copy	can	out	of	bound	
read	on	paddr.	Assume	
malicious	user	that	controls	
heap	chunk	aÇer	paddr.	
could	make	it	so	paddr-
>sa_len	is	large	and	causes	
memory	corrup4on	

Sample bug

•  IPSEC	setsockopt()		
•  Out	of	bound	read		
•  Can	end	up	corrup4ng	memory		
•  Affects:		

•  FreeBSD	11	
•  NetBSD	7.1	

•  Previous	assump4on	is	not	[en4rely]	true:	bugs	in	TCP/IP	stack	do	occur	with	
some	frequency		
•  newer	code			
•  mbuf	handling	is	complicated	and	error	prone		

Drivers

AFack surface entrypoint

•  Lots	and	lots	of	drivers		
•  For	all	sorts	of	things		
•  UNIX:	everything	is	a	file		

•  Most	expose	entrypoints	in	/dev		
•  File	opera4ons		

•  Open		
•  Ioctl		
•  Read	
•  Write		
•  Close	
•  …	

•  Ioctl	is	where	most	of	the	aJack	surface	is!		

int	
cryptof_ioctl(struct	file	*fp,	u_long	cmd,	void	*data)	
{	
...	

	switch	(cmd)	{	
...	

	 	mutex_enter(&crypto_mtx);	
	 	fcr->m4me	=	fcr->a4me;	
	 	mutex_exit(&crypto_mtx);	
	 	mkop	=	(struct	crypt_mkop	*)data;	
	 	knop	=	kmem_alloc((mkop->count	*	sizeof(struct	crypt_n_kop)),		
	 					KM_SLEEP);	
	 	error	=	copyin(mkop->reqs,	knop,	
	 					(mkop->count	*	sizeof(struct	crypt_n_kop)));	
	 	if	(!error)	{	
	 	 	error	=	cryptodev_mkey(fcr,	knop,	mkop->count);		
	 	 	if	(!error)	
	 	 	 	error	=	copyout(knop,	mkop->reqs,	
	 	 	 					(mkop->count	*	sizeof(struct	crypt_n_kop)));	
	 	}	
	 	kmem_free(knop,	(mkop->count	*	sizeof(struct	crypt_n_kop)));	
	 	break;	

...	
}	

Integer	overflow	

Memory	corrup4on	
due	to	int	overflow	

Sample bug

•  Crypto	device	CIOCNFKEYM	ioctl		
•  NetBSD	7.1		

•  Been	there	since	NetBSD	4.0.1?	Thu	Apr	10	22:48:42	2008		
•  Classic	integer	overflow	à	memory	corrup4on		

sta4c	int	
ksyms_open(struct	cdev	*dev,	int	flags,	int	fmt	__unused,	struct	thread	*td)	
{	
...	

	struct	ksyms_soÇc	*sc; 		
...	

	sc	=	(struct	ksyms_soÇc	*)	malloc(sizeof	(*sc),	M_KSYMS,		
					M_NOWAIT|M_ZERO);	

...	
	sc->sc_proc	=	td->td_proc;	
	sc->sc_pmap	=	&td->td_proc->p_vmspace->vm_pmap;	ß	will	be	used	in	d_mmap	callback.		

...	
	error	=	devfs_set_cdevpriv(sc,	ksyms_cdevpriv_dtr);	

…	
}	

sta4c	int	
ksyms_mmap(struct	cdev	*dev,	vm_ooffset_t	offset,	vm_paddr_t	*paddr,	

	 	int	prot	__unused,	vm_memaJr_t	*memaJr	__unused)	
{	
				 	struct	ksyms_soÇc	*sc;	

	int	error;	
	

	error	=	devfs_get_cdevpriv((void	**)&sc);	
	if	(error)	
	 	return	(error);	

	
	/*	
		*	XXX	mmap()	will	actually	map	the	symbol	table	into	the	process	
		*	address	space	again.	
		*/	
	if	(offset	>	round_page(sc->sc_usize)	||		
					(*paddr	=	pmap_extract(sc->sc_pmap,			ß	can	be	expired	pointer!	
					(vm_offset_t)sc->sc_uaddr	+	offset))	==	0)		
	 	return	(-1);	

	
	return	(0);	

}	

Sample bug 2

•  Ksyms	device		
•  FreeBSD	11	

•  Been	there	since	FreeBSD	8.0	Tue	May	26	21:39:09	2009	
•  Expired	pointer		
•  open()	callback	saves	pointer	to	pmap	to	private	fd/device	storage		
•  mmap()	callback	uses	saved	pointer	in	private	fd/device	storage		
•  So	how	is	this	a	problem	?		

• What	if	we	hand	fd	off	to	another	process	(e.g.	send	over	socket	or	fork/execve)	
•  And	then	we	exit	
•  If	other	process	now	does	mmap,	it	will	be	using	an	expired	pmap!			

Compat code

AFack surface entrypoint

•  The	BSDs	have	binary	compa4bility	[compat]	support	for	some	binaries:		
•  Older	versions	of	the	OS		
•  32bit	versions	of	a	program	(on	a	64bit	version	of	the	OS)		
•  Other	opera4ng	system	(e.g.	Linux)		

•  Has	to	emulate	a	bunch	of	stuff	(e.g.	syscalls)		

“The people who rely on the compat layers don't
care enough to maintain it. The people who work
on the mainline system don't care about the compat
layers because they don't use them. The cultures
aren't aligned in the same direction. Compat layers
rot very quickly.” – Theo De Raadt

sta4c	int	
4_bind(file_t	*fp,	int	fd,	struct	svr4_strioctl	*ioc,	struct	lwp	*l)	
{	
...	

	struct	svr4_strmcmd	bnd;	
...	

	if	(ioc->len	>	sizeof(bnd))	
	 	return	EINVAL;	

	
	if	((error	=	copyin(NETBSD32PTR(ioc->buf),	&bnd,	ioc->len))	!=	0)	
	 	return	error;	

...	
	switch	(st->s_family)	{	
	case	AF_INET:	

...	
	 	netaddr_to_sockaddr_in(&sain,	&bnd);	

...	
	}	

...	
}	

#define	SVR4_C_ADDROF(sc)	(const	void	*)	(((const	char	*)	(sc))	+	(sc)->offs)		
...	
sta4c	void	netaddr_to_sockaddr_in	

	(struct	sockaddr_in	*sain,	const	struct	svr4_strmcmd	*sc)	
{	

	const	struct	svr4_netaddr_in	*na;	
	

	na	=	SVR4_C_ADDROF(sc);	ß	could	point	to	anywhere	in	memory		
	memset(sain,	0,	sizeof(*sain));	
	sain->sin_len	=	sizeof(*sain);	
	sain->sin_family	=	na->family;	ß	crash	or	info	leak	
	sain->sin_port	=	na->port;	ß	crash	or	info	leak	
	sain->sin_addr.s_addr	=	na->addr;	ß	crash	or	info	leak	

…	
}	 /*	

	*	Pretend	that	we	have	streams...	
	*	Yes,	this	is	gross.	
...	
	*/	

Sample bug

•  SVR	4	streams	compat	code	
•  NetBSD	7.1		

•  Been	there	since	NetBSD	1.2	Thu	Apr	11	12:49:13	1996	
•  Uses	offset	that	comes	from	userland		

•  Without	any	valida4on		

•  Can	read	arbitrary(-ish)	kernel	memory		
•  Panic		
•  Info	leak	

Trap handlers

AFack surface entrypoint

•  Trap	handlers	handle	some	kind	of	excep4on	or	fault		
•  Div	by	zero		
•  Syscall		
•  Breakpoint	
•  Invalid	memory	access		
•  …	

•  Some	can	be	triggered	by	userland,	and	the	kernel	has	to	handle	them	correctly		

•  due	to	their	nature,	they	are	ugly	and	highly	architecture	specific	

Fuzz it!

•  what	would	happen	if	you	simply	executed	a	bunch	of	random	bytes	as	
instruc4ons?		
•  Surely	a	bunch	of	traps	will	get	generated,	and	the	kernel	would	have	to	handle	
them		

int	rfd;	
	
void	execute_code(unsigned	char	*p)	{	
				int	(*fn)();	
				fn	=	p;	
				fn();	
				return;	
}	
	
void	fuzz()	{	
				unsigned	char	*code	=	mmap(NULL,	lenbuf,	PROT_EXEC	|	PROT_READ	|	PROT_WRITE,	MAP_PRIVATE	|	MAP_ANONYMOUS,	-1,	0);	
				while(1)	{	
			 		read(rfd,	code,	lenbuf);	
			 		int	pid	=	fork();	
			 		if	(pid	==	-1)	{	
			 	 		exit(0);	
			 		}	else	if	(pid	==	0)	{	
			 	 		execute_code(code);	
			 		}	else	{	
			 	 		int	status;	
			 	 		pid_t	r;	
			 	 		r	=	waitpid(pid,	&status,	0);	
			 	 		if	(r	==	-1)	{	
			 	 	 		kill(pid,	9);	
			 	 	 		sleep(1);	
			 	 	 		waitpid(pid,	&status,	WNOHANG);	
			 	 		}	
			 		}	
	
				}	
}	
	
int	main(void)	{	
				rfd	=	open("/dev/urandom",	O_RDONLY);	
				fuzz();	
}	

demo!

Hit xen trap

•  NULL	deref		

File systems

AFack surface entrypoint

•  Filesystem	aJack	surface	seems	easy	enough.		
•  Malicious	fs	image	that	gets	mounted		

•  Also	do	file	opera4ons	on	them	once	mounted		
•  Is	certainly	aJack	surface		

•  However,	there	is	more!	
	
•  In	recent	years	all	3	BSDs	support	fuse		
•  VFS	layer	now	has	to	deal	with	malicious	data	that	comes	from	userland	

•  Before	it	always	came	from	a	trusted	file	system	driver	

AFack surface entrypoint [fuse]

•  FBSD/OBSD/NBSD	all	have	different	fuse	implementa4ons	(no	shared	code	whatsoever)		

•  NBSD:	most	complete	(allows	for	the	most	file	opera4ons)		
•  FBSD:	most	controlled	arguments	passed	back	and	forth		(getaJr,	readdir)	less	opportunity	for	
consumers	to	make	mistakes,	but	more	parsing/processing	in	fusefs	itself,	more	poten4al	for	bugs	in	
fuse	code	itself	

•  OBSD:	minimal	func4onal	implementa4on	(compared	to	the	previous	two)		

•  none	implement	ioctl		

•  all	do:		
•  read	
•  write		
•  readdir		
•  getaJr	
•  setaJr	
•  ...	

int	
vfs_getcwd_scandir(struct	vnode	**lvpp,	struct	vnode	**uvpp,	char	**bpp,	
				char	*bufp,	struct	proc	*p)	
{	

	int	eofflag,	tries,	dirbuflen,	len,	reclen,	error	=	0;	
...	

	struct	vaJr	va;	
...	

	 	error	=	VOP_GETATTR(lvp,	&va,	p->p_ucred,	p);	ß	data	can	come	from	fusefs		
...	

	dirbuflen	=	DIRBLKSIZ;	
	

	if	(dirbuflen	<	va.va_blocksize)	
	 	dirbuflen	=	va.va_blocksize;	ß	fusefs	can	make	this	really	big		

	
	dirbuf	=	malloc(dirbuflen,	M_TEMP,	M_WAITOK);	ß	malloc()	will	panic	on	very	large	values		

...	

error	=	VOP_READDIR(uvp,	&uio,	p->p_ucred,	&eofflag);	ß	fusefs	can	provide	arbitrary	content		
...	
cpos	=	dirbuf;	
...	
for	(len	=	(dirbuflen	-	uio.uio_resid);	len	>	0;	
					len	-=	reclen)	{	

	dp	=	(struct	dirent	*)cpos;	
	reclen	=	dp->d_reclen;	

	
	/*	Check	for	malformed	directory	*/	
	if	(reclen	<	DIRENT_RECSIZE(1))	{	
	 	error	=	EINVAL;	
	 	goto	out;	
	}	

	
	if	(dp->d_fileno	==	fileno)	{	
	 	char	*bp	=	*bpp;	
	 	bp	-=	dp->d_namlen;	ß	fusefs	can	lie	about	d_namlen	

	
	 	if	(bp	<=	bufp)	{	
	 	 	error	=	ERANGE;	
	 	 	goto	out;	
	 	}	

	
	memmove(bp,	dp->d_name,	dp->d_namlen);	ß	out	of	bound	read.		

Sample bug

•  Unbound	malloc	and	out	of	bound	read	(could	panic	or	info	leak)		
•  OpenBSD	6.1		

•  Been	there	since	OpenBSD	4.0	Fri	Apr	28	08:34:31	2006		
•  getcwd	syscall	when	taking	data	from	fuse	/	userland		

sta4c	daddr_t	
ext2_nodealloccg(struct	inode	*ip,	int	cg,	daddr_t	ipref,	int	mode)	
{	
...	

	error	=	bread(ip->i_devvp,	fsbtodb(fs,	
					fs->e2fs_gd[cg].ext2bgd_i_bitmap),	
					(int)fs->e2fs_bsize,	NOCRED,	&bp);	ß	read	from	filesystem		

...	
	ibp	=	(char	*)bp->b_data;	

...	
	len	=	howmany(fs->e2fs->e2fs_ipg	-	ipref,	NBBY);	
	loc	=	memcchr(&ibp[start],	0xff,	len);	
	if	(loc	==	NULL)	{	
	 	len	=	start	+	1;	
	 	start	=	0;	
	 	loc	=	memcchr(&ibp[start],	0xff,	len);	ß	logic	driven	by	fs	data		
	 	if	(loc	==	NULL)	{	
	 	 	prinÜ("cg	=	%d,	ipref	=	%lld,	fs	=	%s\n",	
	 	 					cg,	(long	long)ipref,	fs->e2fs_fsmnt);	
	 	 	panic("ext2fs_nodealloccg:	map	corrupted");		ß	panic	driven	by	fs	data	
	 	 	/*	NOTREACHED	*/	
	 	}	
	}	

...	
}	

Sample bug 2

•  panic()	driven	by	filesystem	data		
•  FreeBSD	11		

•  Been	there	since	FreeBSD	8.1	Thu	Jan	14	14:30:54	2010	
•  Ext2	file	system	code		

Networking (bt, wifi,
irda)

Wifi AFack surface entrypoint

•  Stack	itself		
•  802.11	network	data		
•  Parsing		
•  Info	leaks	

• Wifi	drivers	
•  Data	send	by	device	to	host			

802.11 stack

•  One	802.11	stack	for	all	wifi	drivers		
•  Much	easier	to	maintain	

•  Need	to	fix	in	only	1	place	if	bugs	are	found		
•  ieee80211_input()	is	main	parsing	input		

•  Called	from	all	wifi	drivers		

ieee80211_eapol_key_input(struct	ieee80211com	*ic,	struct	mbuf	*m,	
				struct	ieee80211_node	*ni)	
{	

	struct	ifnet	*ifp	=	&ic->ic_if;	
	struct	ether_header	*eh;	
	struct	ieee80211_eapol_key	*key;	

...	
	eh	=	mtod(m,	struct	ether_header	*);	

...	
	if	(m->m_len	<	sizeof(*key)	&&	
					(m	=	m_pullup(m,	sizeof(*key)))	==	NULL)	{			ß	guarantees	that	there	are	sizeof(struct	ieee80211_eapol_key)	con4nuous	bytes	in	the	mbuf		

..	
	}	

...	
	key	=	mtod(m,	struct	ieee80211_eapol_key	*);	

...	
	if	(m->m_pkthdr.len	<	4	+	BE_READ_2(key->len))	ß	assume	key->len	is	larger	than	key->payload		
	 	goto	done;	

	
	/*	check	key	data	length	*/	
	totlen	=	sizeof(*key)	+	BE_READ_2(key->paylen);		ß	assume	key->len	is	larger	than	key->payload		
	if	(m->m_pkthdr.len	<	totlen	||	totlen	>	MCLBYTES)	
	 	goto	done;	

...	
	/*	make	sure	the	key	data	field	is	con4guous	*/	
	if	(m->m_len	<	totlen	&&	(m	=	m_pullup(m,	totlen))	==	NULL)	{	ß	not	enough	data	pulled	up	if	key->len	is	larger	than	key->payload!	

…	
	}	
	key	=	mtod(m,	struct	ieee80211_eapol_key	*);	

...	
	 	 	 	ieee80211_recv_4way_msg3(ic,	key,	ni);	ß	can	crash	in	here	if	not	enough	data	is	pulled	up.	

...	
}	

802.11 Stack sample bug

•  mbuf	mishandling,	leading	to	crash				
•  Doesn’t	guarantee	it	pulls	up	enough	mbuf	data		

•  OpenBSD	6.1	
•  Bug	has	been	there	for	almost	9	years		

•  Parsing	EAPOL	frames	

802.11 Drivers

•  Wifi	drivers	are	either	PCI	or	USB	

•  Do	you	trust	the	radio?		
•  What	if	it	does	get	compromised?		
	

•  Assume	PCI	cards	cause	total	compromise	(they	can	do	DMA)		
•  Well,	actually,	with	IOMMU	that’s	no	longer	the	case	…		
	

•  USB	is	packet	based	protocol		
•  Host	USB	parsers	should	be	able	to	parse	safely		

•  Currently	BSD	wifi	drivers	do	not	do	this!	
•  Leads	to	trivial	heap	smashes		

void	
run_rx_frame(struct	run_soÇc	*sc,	uint8_t	*buf,	int	dmalen)	
{	
...	

	struct	rt2860_rxwi	*rxwi;	
...	

	uint16_t	len;	
...	

	rxwi	=	(struct	rt2860_rxwi	*)buf;	
...	

	len	=	letoh16(rxwi->len)	&	0xfff;	ß	can	be	at	most	4095	
...	

	/*	could	use	m_devget	but	net80211	wants	con4g	mgmt	frames	*/	
	MGETHDR(m,	M_DONTWAIT,	MT_DATA);	
	if	(__predict_false(m	==	NULL))	{	
	 	ifp->if_ierrors++;	
	 	return;	
	}	
	if	(len	>	MHLEN)	{	<--	if	len	is	4095,	come	here		
	 	MCLGET(m,	M_DONTWAIT);	ß	allocates	a	cluster,	which	is	2048	bytes	long	
	 	if	(__predict_false(!(m->m_flags	&	M_EXT)))	{	
	 	 	ifp->if_ierrors++;	
	 	 	m_freem(m);	
	 	 	return;	
	 	}	
	}	

...	
	/*	finalize	mbuf	*/	
	memcpy(mtod(m,	caddr_t),	wh,	len);	ß	memory	corrup4on!	
	m->m_pkthdr.len	=	m->m_len	=	len;	

...	
}	

/*	
	*	A	frame	has	been	uploaded:	pass	the	resul4ng	mbuf	chain	up	to	
	*	the	higher	level	protocols.	
	*/	
void	
atu_rxeof(struct	usbd_xfer	*xfer,	void	*priv,	usbd_status	status)	
{	
...	

	h	=	(struct	atu_rx_hdr	*)c->atu_buf;	
	len	=	UGETW(h->length)	-	4;	/*	XXX	magic	number	*/		ß	integer	underflow		

	
	m	=	c->atu_mbuf;	
	memcpy(mtod(m,	char	*),	c->atu_buf	+	ATU_RX_HDRLEN,	len);	ß	need	to	validate	len	before	copy.	can	cause	memory	corrup4on		

...	
	usbd_setup_xfer(c->atu_xfer,	sc->atu_ep[ATU_ENDPT_RX],	c,	c->atu_buf,	
					ATU_RX_BUFSZ,	USBD_SHORT_XFER_OK	|	USBD_NO_COPY,	USBD_NO_TIMEOUT,	
	 	atu_rxeof);	
	usbd_transfer(c->atu_xfer);	

}	

void	
otus_sub_rxeof(struct	otus_soÇc	*sc,	uint8_t	*buf,	int	len)	ß	len	comes	from	usb.	can	be	~8k		
{	
...	

	uint8_t	*plcp;	
...	

	plcp	=	buf;	
...	

	mlen	=	len	-	AR_PLCP_HDR_LEN	-	sizeof	(*tail);	
...	

	mlen	-=	IEEE80211_CRC_LEN;	/*	strip	802.11	FCS	*/	
	

	wh	=	(struct	ieee80211_frame	*)(plcp	+	AR_PLCP_HDR_LEN);	
...	

	MGETHDR(m,	M_DONTWAIT,	MT_DATA);	
	if	(__predict_false(m	==	NULL))	{	
	 	ifp->if_ierrors++;	
	 	return;	
	}	
	if	(align	+	mlen	>	MHLEN)	{	
	 	MCLGET(m,	M_DONTWAIT);	ß	allocates	a	cluster,	which	is	2048	bytes	long	
	 	if	(__predict_false(!(m->m_flags	&	M_EXT)))	{	
	 	 	ifp->if_ierrors++;	
	 	 	m_freem(m);	
	 	 	return;	
	 	}	
	}	
	/*	Finalize	mbuf.	*/	
	m->m_data	+=	align;	
	memcpy(mtod(m,	caddr_t),	wh,	mlen);	ß	mlen	can	be	~8k.	can	cause	memory	corrup4on.	

...	
}	

void	
rsu_event_survey(struct	rsu_soÇc	*sc,	uint8_t	*buf,	int	len)	
{	
...	

	struct	ndis_wlan_bssid_ex	*bss;	
	struct	mbuf	*m;	
	int	pktlen;	

...	
	bss	=	(struct	ndis_wlan_bssid_ex	*)buf;	

...	
	if	(__predict_false(len	<	sizeof(*bss)	+	letoh32(bss->ieslen)))		ß	could	int	overflow		
	 	return;	

...	
	/*	Build	a	fake	beacon	frame	to	let	net80211	do	all	the	parsing.	*/	
	pktlen	=	sizeof(*wh)	+	letoh32(bss->ieslen);	ß	could	int	overflow		
	if	(__predict_false(pktlen	>	MCLBYTES))	ß	signedness	issue		
	 	return;	
	MGETHDR(m,	M_DONTWAIT,	MT_DATA);	
	if	(__predict_false(m	==	NULL))	
	 	return;	
	if	(pktlen	>	MHLEN)	{	
	 	MCLGET(m,	M_DONTWAIT);	
	 	if	(!(m->m_flags	&	M_EXT))	{	
	 	 	m_free(m);	
	 	 	return;	
	 	}	
	}	
	wh	=	mtod(m,	struct	ieee80211_frame	*);	

...	
	memcpy(&wh[1],	(uint8_t	*)&bss[1],	letoh32(bss->ieslen));	ß	memory	corrup4on		

...	
}	

802.11 drivers sample bug

• Wide	open	aJack	surface	
•  Atmel	AT76C50x	IEEE	802.11b	wireless	network	device	[atu(4)]	
•  Atheros	USB	IEEE	802.11a/b/g/n	wireless	network	device	[otus(4)]	
•  Realtek	RTL8188SU/RTL8192SU	USB	IEEE	802.11b/g/n	wireless	network	device	[rsu(4)]	
•  Ralink	Technology/MediaTek	USB	IEEE	802.11a/b/g/n	wireless	network	device	[run(4)]	
•  Atheros	USB	IEEE	802.11a/b/g	wireless	network	device	[uath(4)]	

•  Across	all	BSDs	

•  They	didn’t	think	about	the	aJack	surface	on	this	one		
	

Results

•  results:		

•  About	~115	kernel	bugs	so	far		
•  FBSD:	~30	
•  OBSD:	25	
•  NBSD:	~60	
		

•  types	of	bugs	seen:		
•  Straight	heap/stack	smash	
•  race	condi4ons		
•  expired	pointers		
•  Double	frees	
•  recursion	issues	
•  integer	issues		

•  Underflows,	overflows,	signedness	
•  info	leaks		
•  out	of	bound	read	
•  NULL	deref	
•  Division	by	zero	
•  kernel	panics	driven	by	userland		
•  Memory	leaks	

Conclusions

•  Bugs	were	found	in	all	3	of	the	examined	BSDs		

•  Among	all	of	the	aJack	surfaces	men4oned	above		

•  Winner	/	loser		
•  OBSD	clear	winner	(they	have	massively	reduced	their	aJack	surface	over	the	years):	

•  AJack	surface	reduc4on		
•  no	loadable	modules	
•  rela4vely	few	devices	
•  Virtually	no	compat	code	(they	removed	Linux		a	couple	of	years	ago)	
•  removed	en4re	Bluetooth	stack		
•  Significantly	less	syscalls	(e.g.	200+	syscalls	less	than	FBSD)	
•  Cut	support	for	some	older	architectures	

•  Code	Quality	
•  int	overflows	/	signedness	bugs,	as	good	as	gone	in	most	places	
•  Few	info	leaks		

•  NBSD	clear	loser	
•  Tons	of	legacy	and	compat	code	(who	the	hell	s4ll	needs	the	ISO	protocols	???	Really?)		
•  seems	to	be	less	consistent	with	security	code	quality	

•  Too	many	signedness	bugs.		

•  FBSD	is	somewhere	in	between		

More conclusions

•  Bugs	are	s4ll	easy	to	find	in	those	kernels.	Even	OpenBSD.	

•  Varying	level	of	quality	depending	on	age	and	who	wrote	it		
•  Most	consistent	quality	was	observed	with	OpenBSD		

•  The	maintainers	of	various	BSDs	should	talk	more	among	each	other		
•  Several	bugs	in	one	were	fixed	in	the	other		

•  OpenBSD	expired	proc	pointer	in	midiioctl()	fixed	in	NetBSD		
•  NetBSD	signedness	bug	in	ac97_query_devinfo()	fixed	in	OpenBSD		

More conclusions

•  Code	base	size	
•  OpenBSD:	2863505	loc	
•  NetBSD:				7330629	loc	
•  FreeBSD:			8997603	loc		

	
•  Obviously	this	plays	a	part		

•  Can’t	have	a	bug	in	code	you	don’t	have		
•  Accidental	vs.	planned		

•  Haven’t	goJen	to	implemen4ng	something	yet	or	…	
•  Choice	made	on	purpose	to	delete	code		

•  AJack	surface	reduc4on	

More conclusions

•  Many	eyeballs	…	

•  Gut	feeling,	I	suspect	this	is	a	factor.			

•  Based	on	my	result,	code	quality	alone	can’t	account	for	the	discrepancy	
between	the	bug	numbers	(BSD	vs.	Linux).		

•  Say	what	you	will	about	the	people	reviewing	the	Linux	kernel	code,	there	are	
simply	orders	of	magnitude	more	of	them.	And	it	shows	in	the	numbers.		

Ques9ons ?

