Are all BSDs created equally?

A survey of BSD kernel vulnerabilities.

Who Am |

llja van Sprundel

Director of Penetration Testing at IOActive

Pen test

Code review

Break stuff for fun and profit ©

Outline/Agenda

* |Intro

Datal
* vulnerabilities over the years

Test by audit

e Common attack surface
e Somewhat less common attack surface

Some results / conclusions

What is this talk about?

e BSD kernel vulnerabilities
* Comparison
e Between different BSD flavors

 Audience

* Low level security enthusiasts
* UNIX/BSD geeks

e | suspect Linux folks might enjoy this too

e Curious people that like to poke around in OS internals

* Knowledge
* Some basic knowledge of UNIX / BSD internals

* Previous interesting BSD kernel security
research by:

. » Silvio
Standing on + the noir

e Esa Etelavuori

t h es h Oou | d ers e Patroklos (argp) Argyroudis

e Christer Oberg

Of gla ntS * Joel Erikkson

e Clement Lecigne

Re: Theo gave an interview to Forbes Mag. about Linux

Theo de Raadt = Fri, 17 Jun 2005 09:30:05 -0700

> Cn Fri, Jun 17, 2005 at 04:48:31PM +0200, J. Lievisse Adriaanse wrote:

If the Linux people actually cared about Quality, as we do, they would
not have had as many localhost kernel security holes in the last year.

How many is it... 20 so far?

 Somehow that statement has always
been stuck in my head

Really? Got Data? * Isittrue?
e Can we look at some data ?

Source: https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html

Linux » Linux Kernel : Vulnerability Statistics

Vulnerability Trends Over Time

o Vulneﬁ::ilities Do3 Ex:::l:on s C:l:'el'r:t:cy’n lnj:::ion Xss ::'rai::rayl RS:sI:::: soBl\Zep:l:isng lnfo?:::tion Pri‘\::llenges CSRF Inc'::.:seion exilc:its

1999 19 7 3 1 2

2000 5 3 1

2001 23 7 4 3

2002 15 3 1 1 1

2003 19 8 2 1 3 4

2004 51 20 = 12 = 12

2005 133 90 19 19 1 5 5 A

2006 90 61 5 i 7 2 5 3 3

2007 63 41 2 8 3 7 7z 1

2008 70 44 3 17 4 4 6 10 4

2009 105 66 2 22 7 8 11 22 4

2010 124 67 3 16 7 8 30 14 5

2011 83 82 1 21 10 1 21 9 1

2012 115 83 4 25 10 6 19 11

2013 189 101 6 41 13 11 57 26 7

2014 133 89 8 21 10 11 30 20 10

2015 86 55 6 15 4 11 10 17

2016 217 153 5 38 18 12 35 52 1

2017 346 80 165 29 14 9 74 23

Total 1886 1040 234 297 105 2 102 317 243 33
% Of All 55.1 12.4 15.7 5.6 0.0 0.0 0.1 0.0 5.4 16.8 12.9 0.0 0.0

Datal

e Goes from current back to 1999 for Linux kernel vulnerabilities
e Cvedetails.com doesn’t seem to provide data for OBSD/NBSD/FBSD

 Manually grab it from
e https://www.freebsd.org/security/advisories.html
e http://netbsd.org/support/security/advisory.html
e https://www.openbsd.org/errata*.html

BSD kernel vulnerabilities over the years

FreeBSD NetBSD OpenBSD

«oro00 ® LOOKING at these numbers, that was an astute

1999 3

2000 8 4XXXTODO .

T I observation by Theo.

2002 11 6 XXXTODO .

oo B, . TTE e 20 was a very low estimate

2004 8 5XXXTODO

2005 11 8XXXTODO

2006 9 15 XXXTODO .

o7 1 a0 ® But are these numbers on equal footing?

2008 8 6 XXXTODO

2009 5 1XXXTODO

2010 3 6 XXXTODO

2011 1 2XXXTODO

2012 2 1XXXTODO - Many EVEba”S?

2013 8 8XXXTODO
2014 7 6XXXTODO * Yea, yea, | know But is there some truth to it in this
2015 7 2XXXTODO

2016 12 1XXXTODO Case?

2017 1 3XXXTODO

Total 118 96 XXXTODO

Kernel Auditing Overview

° & "< Manual Open Source Kernel Security
Test by audit =
L = FreeBSD, NetBSD, OpenBSD and
* Linux operating systems.

4 Auditing for three months; July to
September 2002.

Black Hat Briefings

 Silvio Cesare did some interesting work in ~2002 that gives

some answers
Immediate Results

" First bug found within hours.
* True for all operating systems audited.

= First bug in [new] non familiar software
® is arguably the hardest to find.

* His results seem to indicate there isn’t really that much of a
quality difference. However:

* that was well over a decade ago.
* Have things changed?

o Black Hat Briefings

* Time spend on the BSDs was only a couple of days compared to Linux

) TimeFrame by Operating
* |f more time would’ve been spend, would more bugs have been found?

System
* bugs are mostly int overflows and info leaks o NOESD v | D e
* Other kinds of issues that can ‘easily’ be found ? .+ FreeBSD + Linux

s —Aweekorless. — All free time.

Black Hat Briefings

Test by Audit redux.

e Spend April-May-June auditing BSD source code.
* Asked myself, “where would the bugs be?”

* Attack surface
* Very common
e Syscalls
* TCP/IP stack
* Somewhat less common (in ascending order, more or less)
Drivers (ioctl interface)
compat code
Trap handlers
Filesystems
Other networking (BT, wifi, IrDA)

Syscalls

Attack surface entrypoint

The obvious attack surface

Syscalls are how userland gets anything done from kernel

Hundreds of them
* FreeBSD: ~550
* OpenBSD: ~330
 NetBSD: ~480

* Assumption: given that they’re obvious, and well tested, less likely to contain
security bugs

int

sys_sendsyslog(struct

{

struct sys_|

} */ *uap 5
int error;
static int d

error = dog
SCARG(uap, nbyte),

SCARG(U

return (err

int

dosendsyslog(struct proc *p, const char *buf, size_t nbyte, int flags,
enum uio_seg sflg)

struct iovec aiov;
struct uio auio;
size_ti, len;

aiov.iov_base = (char *)buf;
aiov.iov_len = nbyte; € user controlled size_t. never capped anywhere

auio.uio_resETV RS Iy
c -02 -pipe -0 syslog syslog.c
$./syslog

ERIEFEDIoRI[panic: Malloc: allocation too large, type = 127, size = 4294967295

If(fp){ Stopped at Debugger+Bx9: leave
TID PID uIbD PRFLAGS PFLAGS CPU COMMAND
e S I ey s] 18688 Bx3 %) B8 syslog
Debugger () at Debugger+Bx9
panic() at panic+8xfe
alloc() at malloc+Bx621

}EBE{ osendsyslog() at dosendsyslog+Bx3cf
sys_sendsyslog() at sys_sendsyslog+8Bxbe
syscall() at syscall+Bx197

-— syscall (number 112) ——-
end of kernel
} end trace frame: Bx7f7ffffd8e38, count: 9

Ax1B8c4aclbB4da:

http://wnn. openbsd. org/ddb. htMl describes the miniMmum info required in bug
reports. Insufficient info makes it difficult to find and fix bugs.

Sample bug

sendsyslog system call

OpenBSD 6.1
* Been there since OpenBSD 6.0

Unbound length passed to malloc() from userland

Will trigger a kernel panic

* Previous assumption is not [entirely] true: bugs in syscalls do occur with some
frequency

* Especially newly added syscalls

TCP/IP stack

Attack surface entrypoint

 TCP/IP stack
* lpv4/6
e Udp/tcp/icmp
* Ipsec

* Obvious and well known attack surface
* Has been around forever

* Assumption: well tested and less likely to find bugs there

struct secpolicy *
key_msg2sp(

/* length check */

if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { _

ipseclog((LOG_DEBUG, "key msg2sp: "

LIy DN -y T DRy 1 S W (AW Y

length check is incomplete.
sadb_x_ipsecrequest_len can
be invalid

S

if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {

struct sockaddr *paddr; h

paddr = (struct sockaddr *)(xisr + 1);

/* validity check */

length check is incomplete.
sadb_x_ipsecrequest_len can
be invalid

length check is incomplete.

if (paddr->sa_len | Paddr->sa_len can be

> sizeof((*p_isr)->saidx.src)) {

ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
"address length.\n"));

key_freesp(newsp, KEY SADB_UNLOCKED);

*error = EINVAL;

return NULL;

t

invalid

this copy can out of bound
read on paddr. Assume
malicious user that controls
heap chunk after paddr.

bcopy(paddr, &(*p_isr)->saidx.src, paddr->sa_len); _

could make it so paddr-
>sa_len is large and causes
memory corruption

Sample bug

IPSEC setsockopt()
Out of bound read
e Can end up corrupting memory

Affects:
* FreeBSD 11

 NetBSD 7.1
Previous assumption is not [entirely] true: bugs in TCP/IP stack do occur with
some frequency

* newer code

 mbuf handling is complicated and error prone

Drivers

Attack surface entrypoint

Lots and lots of drivers
For all sorts of things

UNIX: everything is a file
* Most expose entrypoints in /dev

File operations

* Open

* loctl

* Read
Write
Close

loctl is where most of the attack surface is!

int

cryptof ioctl(struct file *fp, u_long cmd, void *data)

{

switch (cmd) {

mutex_enter(&crypto_mtx);
fcr->mtime = fcr->atime;
mutex_exit(&crypto_mtx);

mkop = (struct crypt_mkop *)data;

knop = kmem_alloc((mkop->count F sizeof(struct crypt_n_kop)),
KM_SLEEP); h
error = copyin(mkop->regs, knop, Integer overflow

(mkop->count * sizeof(struct crypt_n_kop)));

if ('error) {

}

kmem_free(knop, (mkop->count * sizeof(struct crypt_n_kop)));

break;

error = cryptodev_mkey(fcr, knop, mkop->count); _

if (lerror)
error = copyout(knop, mkop->regs,
(mkop->count * sizeof(struct crypt_n_kop)));

Memory corruption
due to int overflow

Sample bug

* Crypto device CIOCNFKEYM ioctl

* NetBSD 7.1
* Been there since NetBSD 4.0.1? Thu Apr 10 22:48:42 2008

* Classic integer overflow = memory corruption
before ioc

- —
i: 51

ptr: Bxbb91286808
before ioctl

static int

1 s 1 LI - | LI T ol 1 1 | 1 ks 11\

ksyms_open(st

{

SC->S
SC->S

error

static int
ksyms_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
int prot __unused, vm_memattr_t *memattr __unused)
{
struct ksyms_softc *sc;
int error;

error = devfs_get cdevpriv((void **)&sc);
if (error)
return (error);

/*
* XXX mmap() will actually map the symbol table into the process
* address space again.
*/
if (offset > round_page(sc->sc_usize) | |
(*paddr = pmap_extract(sc->sc_pmap, < can be expired pointer!
(vm_offset_t)sc->sc_uaddr + offset)) == 0)
return (-1);

return (0);

Unread portion of the kernel message buffer:

Fatal trap 12: page fault

puid = 0; apic id = 0
Sa m | e b 2 ault virtual address
p u g h;c—:n pointer

[mln er
(Hl(— segment

processor efl gs

* Ksyms device

* FreeBSD 11
* Been there since FreeBSD 8.0 Tue May 26 2 Fgs

er numb

page fault

Oxffffffffaofaddcc

* open() callback saves pointer to pmap ik

8 Oxffffffff80e00cf5 2

* mmap() callback uses saved pointer in |ERssEEEE

49253 Z:
OxFFFFT180fa0031 3

* Expired pointer :] X F1801a0123 -

LI | | | A | | | | A | I ||

) Oxffffffffeodffddg at

1 oxffFfffffaoe214e6 a

* So how is this a problem ? #12 OxFFFffifT809867c5 ot

3 Oxffffffff8oelfo6e -

while in kernel mode

oxfffffdoofoo0e000
supervisor read data, page not present

0x20: Ox T fB0far2f

bése O%O, li{it O;fffff, type 0x1b
, pres 1, long L, dkf‘7 , gran 1
led, IOPL = 0

'er-f1 21+0x45

ap pfault+0xle3

* What if we hand fd off to another pisgsitissttr g

Uptime: Od hﬁw‘ S

* And then we exit Dumping 237 out of 991 MB:

* If other process now does mmap, itfe

phpn h:
in pcpu. h

(kgdb) W

Compat code

Attack surface entrypoint

* The BSDs have binary compatibility [compat] support for some binaries:
e Older versions of the OS
e 32bit versions of a program (on a 64bit version of the OS)
e Other operating system (e.g. Linux)

e Has to emulate a bunch of stuff (e.g. syscalls)

“The people who rely on the compat layers don't
care enough to maintain it. The people who work
on the mainline system don't care about the compat
layers because they don't use them. The cultures
aren't aligned 1n the same direction. Compat layers
rot very quickly.” — Theo De Raadt

staticint

ti_bind(file_t *fp, int fd, struct svr4_strioctl *ioc, struct lwp *I)

{

struct svr4_strmcmg

if (iloc->len > sizeof(}
return EIN

if ((error = copyin(N
return errg

switch (st->s_family
case AF_INET:

netaddr_t

#define SVR4_C_ADDROF(sc) (const void *) (((const char *) (sc)) + (sc)->offs)

static void netaddr_to_sockaddr _in
(struct sockaddr_in *sain, const struct svr4_strmcmd *sc)

{

const struct svr4_netaddr_in *na;

na = SVR4_C_ADDROF(sc); € could point to anywhere in memory
memeset(sain, 0, sizeof(*sain));

sain->sin_len = sizeof(*sain);

sain->sin_family = na->family; €< crash or info leak

sain->sin_port = na->port; < crash or info leak
sain->sin_addr.s_addr = na->addr; < crash or info leak

'}" ;

* Pretend that we have streams...
* Yes, this is gross.

..*./

Sample bug

SVR 4 streams compat code

NetBSD 7.1
* Been there since NetBSD 1.2 Thu Apr 11 12:49:13 1996

Uses offset that comes from userland
* Without any validation

Can read arbitrary(-ish) kernel memory
* Panic
* Info leak

Trap handlers

Attack surface entrypoint

* Trap handlers handle some kind of exception or fault
* Div by zero
e Syscall
* Breakpoint
* Invalid memory access

 Some can be triggered by userland, and the kernel has to handle them correctly

* due to their nature, they are ugly and highly architecture specific

Fuzz it!

* what would happen i
instructions?

e Surely a bunch of tra
them

demo!

ViU yuw V. L0 4 L
Copyright 2004 Free I
GDB 1is Tree softwar red by the crn Ckﬂkfﬁl Public License,
welcome to change it and/or distribute > coples of 1t under certal
Type ”shu\ copylng" to see ’hk conditions.

There is absolutely no .1II1H y for CDB Type "show warranty" f
This GDB was configured as 11dﬂ~ marcel-freebsd"

e Foundation, Inc

. Unread portion of ’hk kernel message buffer:
<6>pid 6358 (instr), uid 1001: exited on signal 10 (core dumped)
I Xe n ra p kernel trap 12 with’ interrupts disabled

Fatal trap 12: page fault while in kernel mode
cpuid = 0; apic id = 00
Taul virtual address = 0x0

* NULL deref instruction pointer = 0x
stack pointer = 0x
frame pointer =

code segment - base HHD 1111’ 0<TTTTT type 0x1b

= DPL 0, pres 1, long 1, dkTJ_ 0, gran 1
proie;;:' eflags = resume, IOPL = 0
current process = 6359 (instr)
trap number Y

panic: page fault
cpuid = 0

¥ — — | KDB: stack backtrace:
4 ' | § \ I #0 E)?‘:TTfTTfTTuOL:iG77 at kdb backtrace+0x67
— #1 Oxffffffff%@ad@Bel at vpanic+0x182

W

$-
N
D
-
—
—-
—
—
—-
-
—
Q0
(o)
.l.
l
w
W
.L‘

t panic+0x43
Lt trap fatal+0x351

at trap pfault+0xle3

at trap+0x26¢

; at calltrap+0x8

#7 H<ffffffffnﬂTn»PT at Xxen intr upcall+0x8c
Uptime: 23m29s

Dumping 146 out of 991 MB:..11%..22%..3

-
(&)
D
—
—
—
-
—+
-ty
-+
—
Qo
(o)
—
..L
k
b
(40)

$-
i
-
—
—
-
—
—
-
_’.
D
—
o))
(o)
_’.
N
w
(o h)

-
o
Q
—+
—
—
—
—
—
—
—
S
—
v}
D
(v}

H-
N
D
-
—
—
-
—
—
-
—
Q0
o
Ay
(0]
I
1o
(v))

.55%..66%..77%..8

W

Reading symbols from /usr/lib/debug/boot/kernel/uhid.ko.debug..
Loaded symbols for /usr/lib/debug/boot/kernel/uhid.ko.debug
#0 doadump (textdump=<value optimized out>) at pcpu.h:221
221 pcpu.h: No such file or directory.
in pcpu.h

and you are
n conditions.

or details.

fault code = H[Fr,l 0r \ri = WQ’Q nge not present

8%..99%

.done.

File systems

Attack surface entrypoint

Filesystem attack surface seems easy enough.
* Malicious fs image that gets mounted
* Also do file operations on them once mounted
* |s certainly attack surface

However, there is more!

In recent years all 3 BSDs support fuse

VFES layer now has to deal with malicious data that comes from userland
e Before it always came from a trusted file system driver

Attack surface entrypoint [fuse]

* FBSD/OBSD/NBSD all have different fuse implementations (no shared code whatsoever)
* NBSD: most complete (allows for the most file operations)

* FBSD: most controlled arguments passed back and forth (getattr, readdir) less opportunity for
consumers to make mistakes, but more parsing/processing in fusefs itself, more potential for bugs in

fuse code itself
e OBSD: minimal functional implementation (compared to the previous two)

* none implement ioctl

* all do:
* read
* write
* readdir
e getattr
* setattr

int

vfs_getcwd scandi
char *bufp, strug

{

int eoffla;

struct vat

dirbuflen

if (dirbufl

dirbuf = r

error = VOP_READDIR(uvp, &uio, p->p_ucred, &eofflag); < fusefs can provide arbitrary content
cpos = dirbuf;

for (len = (dirbuflen - uio.uio_resid); len > 0;
len -=reclen) {
dp = (struct dirent *)cpos;
reclen = dp->d_reclen;

/* Check for malformed directory */
if (reclen < DIRENT_RECSIZE(1)) {
error = EINVAL;
goto out;

}

if (dp->d_fileno == fileno) {
char *bp = *bpp;
bp -= dp->d_namlen; €< fusefs can lie about d_namlen

if (bp <= bufp) {
error = ERANGE;
goto out;

}

memmove(bp, dp->d_name, dp->d_namlen); € out of bound read.

Sample bug

* Unbound malloc and out of bound read (could panic or info leak)

* OpenBSD 6.1
« Been there since OpenBSD 4.0 Fri Apr 28 08:34:31 2006

» getcwd syscall when taking data from fuse / userland

static daddr_t
ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)

{

error = bread(ip->i_devvp, fsbtodb(fs,
fs->e2fs_gd[cg].ext2bgd i bitmap),
(int)fs->e2fs_bsize, NOCRED, &bp); € read from filesystem

ibp = (char *)bp->b_data;

len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
loc = memcchr(&ibp[start], 0xff, len);
if (loc == NULL) {
len = start + 1;
start =0;
loc = memcchr(&ibp[start], 0xff, len); €< logic driven by fs data
if (loc == NULL) {
printf("cg = %d, ipref = %lld, fs = %s\n",
cg, (long long)ipref, fs->e2fs_fsmnt);
panic("ext2fs_nodealloccg: map corrupted"); < panic driven by fs data
/* NOTREACHED */

Sample bug 2

e panic() driven by filesystem data

* FreeBSD 11
« Been there since FreeBSD 8.1 Thu Jan 14 14:30:54 2010

e Ext2 file system code

Networking (bt, wifi,
irda)

Wifi Attack surface entrypoint

e Stack itself
e 802.11 network data
* Parsing
* Info leaks

e Wifi drivers

e Data send by device to host

802.11 stack

* One 802.11 stack for all wifi drivers

* Much easier to maintain

* Need to fix in only 1 place if bugs are found
* ieee80211 input() is main parsing input

* Called from all wifi drivers

ieee80211 eapol_key_input(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni)

{
struct ifnet *ifp = &ic->ic_if;
struct ether_header *eh;
struct ieee80211_eapol_key *key;

eh = mtod(m, struct ether_header *);

if (m->m_len < sizeof(*key) &&
(m =m_pullup(m, sizeof(*key))) == NULL) { € guarantees that there are sizeof(struct ieee80211_eapol_key) continuous bytes in the mbuf

}

key = mtod(m, struct ieee80211_eapol_key *);

if (m->m_pkthdr.len < 4 + BE_READ_2(key->len)) €< assume key->len is larger than key->payload
goto done;

/* check key data length */
totlen = sizeof(*key) + BE_READ 2(key->paylen); €< assume key->len is larger than key->payload
if (m->m_pkthdr.len < totlen | | totlen > MCLBYTES)

goto done;

/* make sure the key data field is contiguous */
if (m->m_len < totlen && (m = m_pullup(m, totlen)) == NULL) { € not enough data pulled up if key->len is larger than key->payload!

}
key = mtod(m, struct ieee80211_eapol_key *);

ieee80211_recv_4way_msg3(ic, key, ni); € can crash in here if not enough data is pulled up.

802.11 Stack sample bug

 mbuf mishandling, leading to crash
* Doesn’t guarantee it pulls up enough mbuf data

* OpenBSD 6.1

* Bug has been there for almost 9 years

e Parsing EAPOL frames

302.11 Drivers

Wifi drivers are either PCl or USB

Do you trust the radio?
 What if it does get compromised?

Assume PCI cards cause total compromise (they can do DMA)
* Well, actually, with IOMMU that’s no longer the case ...

USB is packet based protocol

* Host USB parsers should be able to parse safely
e Currently BSD wifi drivers do not do this!
* Leads to trivial heap smashes

void

* th
*/

atu |

void

void

otu

{

void

rsu_event_survey(struct rsu_softc *sc, uint8_t *buf, int len)

{

struct ndis_wlan_bssid_ex *bss;
struct mbuf *m;
int pktlen;

bss = (struct ndis_wlan_bssid_ex *)buf;

if (__predict_false(len < sizeof(*bss) + letoh32(bss->ieslen))) < could int overflow
return;

/* Build a fake beacon frame to let net80211 do all the parsing. */
pktlen = sizeof(*wh) + letoh32(bss->ieslen); < could int overflow
if (__predict_false(pktlen > MCLBYTES)) < signedness issue
return;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL))
return;
if (pktlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (I(m->m_flags & M_EXT)) {
m_free(m);
return;
}
}

wh = mtod(m, struct ieee80211_frame *);

memcpy(&wh([1], (uint8_t *)&bss[1], letoh32(bss->ieslen)); € memory corruption

memory corruption

802.11 drivers sample bug

* Wide open attack surface

* Atmel AT76C50x IEEE 802.11b wireless network device [atu(4)]
Atheros USB IEEE 802.11a/b/g/n wireless network device [otus(4)]
Realtek RTL8188SU/RTL8192SU USB IEEE 802.11b/g/n wireless network device [rsu(4)]
Ralink Technology/MediaTek USB IEEE 802.11a/b/g/n wireless network device [run(4)]
Atheros USB IEEE 802.11a/b/g wireless network device [uath(4)]

e Across all BSDs

* They didn’t think about the attack surface on this one

Results

* results:

e About ~115 kernel bugs so far

FBSD: ~30
OBSD: 25
NBSD: ~60

* types of bugs seen:

Straight heap/stack smash
race conditions
expired pointers
Double frees
recursion issues
integer issues
* Underflows, overflows, signedness
info leaks
out of bound read
NULL deref
Division by zero
kernel panics driven by userland
Memory leaks

Conclusions

* Bugs were found in all 3 of the examined BSDs
* Among all of the attack surfaces mentioned above

* Winner / loser
* OBSD clear winner (they have massively reduced their attack surface over the years):
* Attack surface reduction
* no loadable modules
* relatively few devices
* Virtually no compat code (they removed Linux a couple of years ago)

removed entire Bluetooth stack
Significantly less syscalls (e.g. 200+ syscalls less than FBSD)
* Cut support for some older architectures
* Code Quality
* int overflows / signedness bugs, as good as gone in most places
* Few info leaks

* NBSD clear loser
* Tons of legacy and compat code (who the hell still needs the ISO protocols ??? Really?)
* seems to be less consistent with security code quality
* Too many signedness bugs.

* FBSD is somewhere in between

More conclusions

* Bugs are still easy to find in those kernels. Even OpenBSD.

* Varying level of quality depending on age and who wrote it
* Most consistent quality was observed with OpenBSD

* The maintainers of various BSDs should talk more among each other

e Several bugs in one were fixed in the other

* OpenBSD expired proc pointer in midiioctl() fixed in NetBSD
* NetBSD signedness bug in ac97 _query_devinfo() fixed in OpenBSD

More conclusions

e Code base size
* OpenBSD: 2863505 loc
e NetBSD: 7330629 loc
 FreeBSD: 8997603 loc

* Obviously this plays a part
e Can’t have a bug in code you don’t have
* Accidental vs. planned

* Haven’t gotten to implementing something yet or ...

* Choice made on purpose to delete code
* Attack surface reduction

More conclusions

Many eyeballs ...

Gut feeling, | suspect this is a factor.

Based on my result, code quality alone can’t account for the discrepancy
between the bug numbers (BSD vs. Linux).

Say what you will about the people reviewing the Linux kernel code, there are
simply orders of magnitude more of them. And it shows in the numbers.

